8 16th World Meeting

LISBOA 2 MAY 25/28

New developments in predicting rutting of asphalt mixtures from binder rheological characteristics

J.-P. Planche, S. Dreessen (Total Refining & Marketing)

www.irf2010.com

The purpose of the presentation

DSR - MSCRT

French LCPC Rut Tester

Background: What is Rutting?

- One of the main pavement damages
- Plastic deformation of a asphalt mix caused by heavy traffic loads
- High strain failure in the pavement
- Non-linear response

What is MSCRT? (1/3)

Multiple Stress Creep and Recovery Test

- Method developed in the USA for high temperature performance based binder specification
 - Standard AASHTO TP 70
 - Standard ASTM D7405-08A
- Post-SHRP development to better predict the impact of modified binders on asphalt mix rutting performances
 - Rheological criteria G*/sin δ not showing good correlation between binder performances and rutting

What is MSCRT? (2/3)

- Using the Dynamic Shear Rheometer
- RTFOT aged binder
- Creep and recovery test
 - 1s creep and 9 s recovery
 - 10 cycles per stress level, no rest periods
 - 2 stress levels: 100 and 3200 Pa
 - PG grade temperature

What is MSCRT? (3/3)

As a function of cycle numbers and stress levels

- Determining the criteria Jnr = non-recoverable creep compliance
 - The lower the Jnr, the better the resistance to deformation
- Determining the % recovery
 - Characterization of polymer modification

Binder MSCRT Results: Pure bitumen

- **≻**Jnr is bitumen dependant
- ➤ Tendency: The harder the grade, the lower the Jnr = the higher the resistance to deformation under high shear stress
- >Clear stress dependency loss of linearity

Binder MSCRT Results: (Crosslinked) PmB's

- ➤ High resistance of Styrelf® to stress = low Jnr level
- >Highly modified and harder crosslinked PmB's are more resistant to repeated stress deformation

Asphalt testing: French rut tester

Principle:

30000 cycles

Simulation of heavy truck load

Formulation of AC (EB) 10

Asphalt testing Experimental protocol

Asphalt mixture

- Rut resistant asphalt concrete wearing course
- AC 10 according to EN 13108-1
 - 3rd class (rut depth < 5%)</p>

Sand 0/2 [%]	37,0
2/4 [%]	10,0
4/6 [%]	12,0
6/10 [%]	39,0
Filler [%]	2,0

Aggregate: Diorite

• Binder: 5.7 ppc

• Air Void: 7.2% (6.8-7.3)

Asphalt concrete - binder Correlation?

All binders – pure / modified

➤ A trend for softening point

- $ightharpoonup G^*/\sin \delta$ not a good predictor for rutting
- ➤ Does not capture modified binders resistance to deformation

www.irf2010.com

MSCRT: asphalt concrete - binder correlation

- Fair correlation between Jnr and rut depth @ 30000 cycles
- ➤ Better correlation at higher stress levels at 60 ℃
 - ightharpoonup At 100 Pa \Rightarrow R²=0,36 At 3200 Pa \Rightarrow 0,44, At 25600 Pa \Rightarrow 0,77
- **➤ Validation of links between rutting and non linearity**

 No correlation between Jnr and Penetration and R&B

➤ Binders with similar R&B or PEN can display very different Jnr

Conclusions (1/2)

- Possible ranking of binders by the nonrecoverable creep compliance Jnr
 - Jnr normalizes the binder strain response to stress
 - Better differentiation at high stress level at 60°C
 - Or lower stress level at higher temperature
 - No correlation between the Jnr values and softening point, penetration and G*/sin δ

Conclusions (2/2)

- Jnr, a relevant alternative to replace R&B soft.
 point and G*/sin δ for rutting prediction
 - Jnr allows characterizing both modified and unmodified binders
 - Jnr better correlates to French WT rutting test at
 60 ℃ than G*/sin δ, softening point and Pen
 - Stress related correlation confirming binder non linearity impact in rutting

⇒Interest for EN standardization ?

