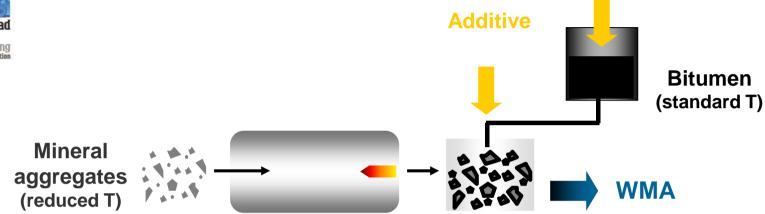
2 16th World Meeting

Warm Mix Asphalts by Chemical Additives Properties and Advantages

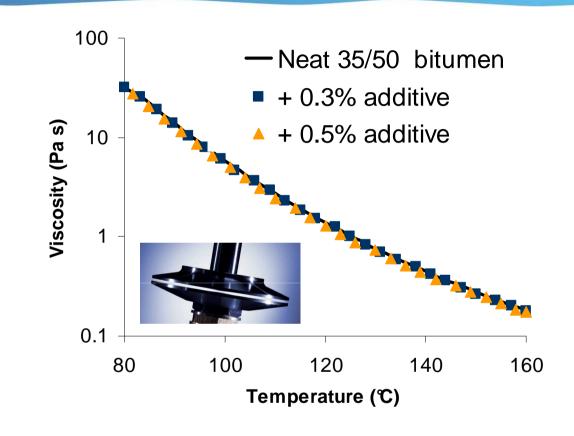
www.irf2010.com



Warm Mix Asphalts Technologies

- 1) Sequence of soft and hard bitumens A soft bitumen is used to cover a portion of the aggregates at lower temperatures and a foamed hard bitumen is used afterwards for the rest.
- 2) Water Foam Processes Water is added to form a bitumen foam when it evaporates. (Zeolites, partial drying of mineral aggregates, emulsion, foaming nozzles, etc..)
- **3)** Waxes Solid additives (2-3 wt% used) that melt at paving temperatures ($T > \sim 100^{\circ}$), reducing the bitumen viscosity.
- 4) Chemical Additives Liquid surfactant-based additives

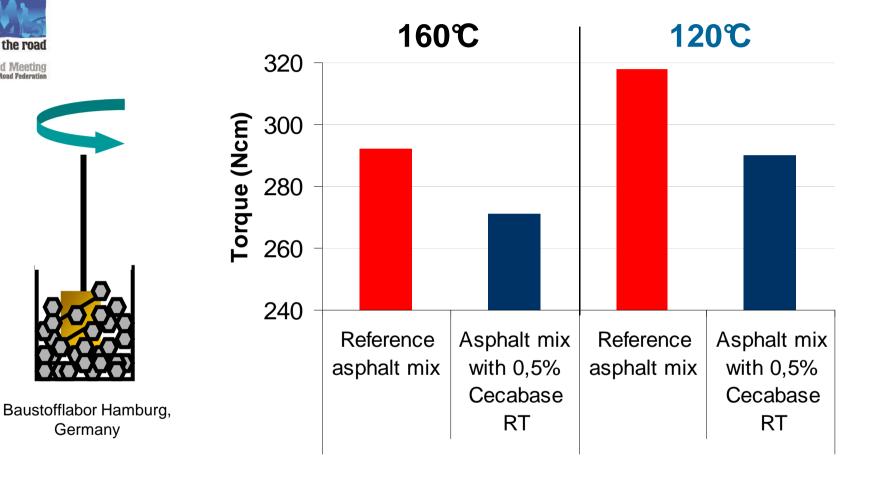
WMA chemical additives



- Liquid surfactant-based formulations
- Control the bitumen/aggregate **interface** to reduce internal frictions.
- Only 0.2-0.6 wt% (relative to the bitumen) is required
- Reductions on fabrication temperatures up to 45℃ can be achieved.
- No plant modification is necessary

Bitumen properties

 No change in bitumen viscosity, penetration grade or R&B temperature



	50/70 Bitumen	50/70 Bitumen + 0.5% additive
Penetration (1/10mm)	51	50
Ring and Ball (℃)	51.2	50.8

www.irf2010.com

Asphalt Mix Properties

Significant improvement of mix workability

Laboratory Tests

Materia	Is	used

Aggregates Fraction (mm)	Wt %
Filler	2.5
0/2	33.5
2/6	20
6/10	44

5.3% bitumen with <u>0.4 wt%</u> of Cecabase RT® additive

		HMA (160℃)	WMA (110℃)	the norm
PCG	% Voids after 60 gyrations NF P 98-252	8.6	8.1	5< %< 10
Duriez	Moisture damage (r/R) NF P 98-251-1	0.87	0.87	>0.75
Rutting	(%) after 30,000 cycles NF P 98-253-1	4.11	4.19	<5

No significant differences in mechanical performance were observed between a HMA and a WMA with the chemical additive.

Example Field Jobs

- ► BBSG 0/10 rolling surface, (Béton Bitumineux Semi-Grenu) with 10% or RAP. Compacted at 125℃. 2 years of service → OK.
- ✓ EME (Enrobé a Module Eléve) for a high traffic road with a 10/20 [1/10mm] bitumen. Produced at 130℃ (regularly 170°C).
- ► BBTM (Béton Bitumineux Trés Mince) for a **highway rolling surface** with a **polymer-modified bitumen**. Produced at **130**°C (regularly 170°C).

 Robust technology –different kind of bitumens, aggregates, formulas and conditions are ok

Emissions reduction

 Measurements were taken during the production of a thin wearing course with Polymer Modified Bitumen

	Fumes T (℃)	Dust (g/ton)	CO (g/ton)	CO ₂ (g/ton)	VOC (g/ton)	NO ₂ (g/ton)
WMA (125℃)	97	5.4	69.8	13.4	8.5	21.4
HMA (170℃)	125	7.4	109.6	15.6	10.7	31.2
Difference	-28℃	-27%	-36%	-14%	-21%	-31%

Energy savings

Base Layer 0/20

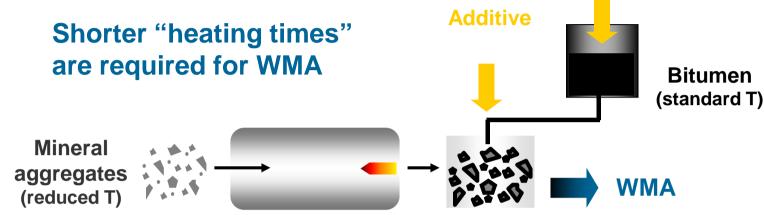
Bitumen content: 4.7%

Additive: 0,5%

Foundation Layer 0/25

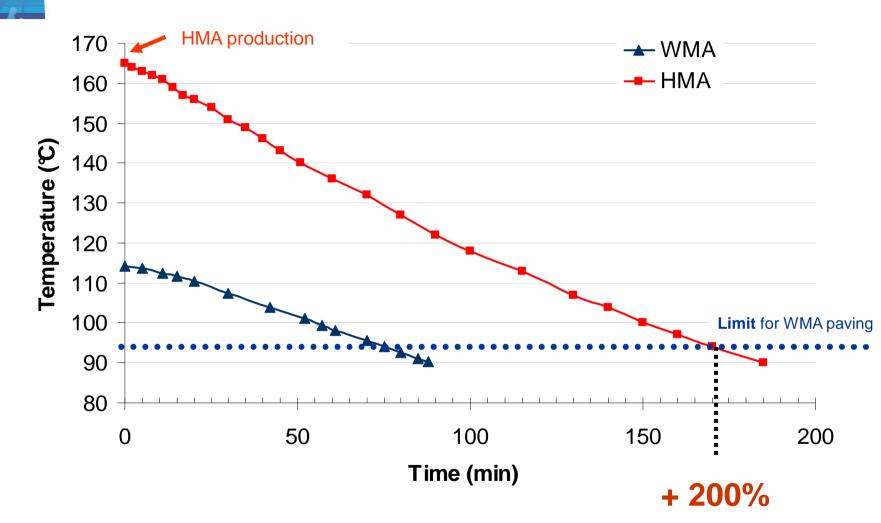
Bitumen content: 4.1%

Additive: 0,5%

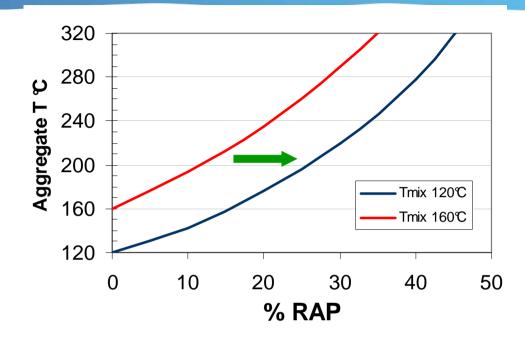

	HMA 150℃	WMA 125℃	Savings
Gas consumption (m³/ton)	6.4	5.1	20%

	HMA 145°C	WMA 125°C	Savings
Gas consumption (m³/ton)	7.9	6.0	24%

"By **reducing 40℃** the temperature needed to produce the 350 million tons of asphalt mix produced in Europe every year, WMA would enable the road industry to generate energy savings equivalent to the annual fuel consumption of **55 New York –Paris daily flights.**"


Production rate increase

- An increase from 210 to 280 tons of mix /h (~ 30% increase) was observed when changing from HMA to WMA
- Flexible technology Easy to change from HMA to WMA and back


 A HMA with chemical additives may be paved after a hauling time ~3 times longer

www.irf2010.com

RAP

Required aggregate temperatures for a given % of RAP (Calculated)

	T aggregates (℃)	T bitumen (℃)	T RAP (℃)	T compaction (℃)	ITS (MPA)
Mix 20% RAP	200	160	25	150	1.28
Mix 40% RAP	200	160	25	130	0.98
Mix 40% RAP + 0.4% Cecabase RT	200	160	25	130	1.32

Larger amounts of RAP may be used

Conclusions

- Adding 0.2 to 0.6% of **Cecabase RT** additives® in the bitumen improves the workability of an asphalt mix without changing the binder characteristics.
- These technology is **easy** to use and applicable to different kinds of asphalt mixtures
- Several **advantages** by the use of these additives were discussed:

- Energy savings
- Higher production rate
- Less emissions
- Higher RAP content

